Los grandes proyectos internacionales de construcción de obras subterráneas, un reto tecnológico para el siglo XXI

POR:
LAUREANO CORNEJO ÁLVAREZ, PRESIDENTE DE GEOCONSULT INGENIEROS CONSULTORES, S.A.
ÍNDICE

1.- INTRODUCCIÓN ... 1
2.- EL FUTURO DE LAS OBRAS SUBTERRÁNEAS .. 3
 2.1.- DEMANDA CRECIENTE DE LAS OBRAS SUBTERRÁNEAS. .. 3
 2.2.- BENEFICIOS DE LA CONSTRUCCIÓN SUBTERRÁNEA ... 5
3.- FUTURAS TENDENCIAS EN LAS OBRAS SUBTERRÁNEAS .. 8
 3.1.- FASE DE PROYECTO .. 8
 3.1.1.- Investigación Geológica-Geotécnica ... 8
 3.1.2.- Ensayos de Laboratorio ... 11
 3.1.3.- Mecánica de Rocas .. 11
 3.1.3.1.- Caracterización del macizo rocoso .. 12
 3.1.3.2.- Modelización del macizo rocoso ... 13
 3.1.3.3.- La incertidumbre en los datos .. 14
 3.1.3.4.- Otras Áreas críticas que es necesario desarrollar. 14
 3.1.4.- Ingeniería de Proyectos ... 15
 3.1.4.1.- Bases de datos Inteligentes ... 16
 3.1.4.2.- Modelización y Cálculo .. 16
 3.1.4.3.- Ingeniería de Decisión. Análisis de Riesgos .. 19
 3.1.4.4.- Seguridad ... 21
 3.1.4.5.- Instrumentación y Auscultación ... 25
 3.1.4.6.- Utilización de Nuevos Materiales ... 26
 3.1.4.7.- Impacto sobre el Medio Ambiente ... 31
 3.2.- FASE DE CONSTRUCCIÓN .. 32
 3.2.1.- Conocimiento del terreno ... 33
 3.2.2.- Capacidades de técnicos y operarios ... 34
 3.2.3.- Maquinaria ... 35
 3.2.4.- Revestimientos ... 41
 3.2.5.- Excavación con Perforación y Voladura .. 43
 3.2.6.- Otros Métodos de Excavación ... 44
 3.2.7.- Otros objetivos de importancia en la Innovación Tecnológica aplicada a la construcción subterránea. ... 45
 3.2.8.- Instrumentación ... 48
4.- CONCLUSIONES .. 49
5.- AGRADECIMIENTOS ... 50
6.- BIBLIOGRAFÍA .. 51
1. INTRODUCCIÓN

Los Organismos Internacionales y los Estados se verán obligados a promover, durante el siglo XXI, el desarrollo y la realización de megaproyectos que permitan establecer conexiones rápidas y seguras entre las distintas áreas geográficas del planeta, entre Continentes y entre países geográficamente alejados, para favorecer la movilidad de las personas y el intercambio de todo tipo de mercancías.

La construcción de estas grandes vías de comunicación, exigirá atravesar importantes barreras naturales como: Estrechos y cadenas montañosas que, durante milenios, no se han pensado ni podido franquear. En muchos casos el modo más seguro y económico de remover estas barreras geográficas, será la realización de importantes obras subterráneas que exigirá el desarrollo de nuevos métodos de construcción más seguros y eficaces. Este desarrollo necesitará de nuevos avances tecnológicos, para el diseño de máquinas tuneladoras, maquinaria auxiliar, nuevos materiales de construcción y nuevos sistemas de seguridad, en los campos de la Automática, la Robótica, la Nanotecnología, la utilización de Materiales Compuestos más ligeros y resistentes, y la Mecatrónica (Figura 1).

Ésta última, es la nueva ingeniería, que comienza en Japón en los años 80 con la fabricación de los primeros robots. Integra diferentes campos de la ingeniería como:

- La Mecánica de Precisión
- La Electrónica y la Micro-Electrónica
- La Computación
- La Inteligencia Artificial
- Los Sistemas de Control

El desarrollo de la Mecatrónica permitirá fabricar

- Máquinas inteligentes, robots capaces de procesar información y de adquirir experiencia para su funcionamiento.
- Estructuras inteligentes, que tendrán la capacidad de informar de su funcionamiento y de su estado de conservación, así como de adaptarse a las solicitudes a las que se encuentren sometidas.
- Mecanismos de alta precisión controlados por dispositivos electrónicos reprogramables y adaptables para funcionar en diferentes condiciones.
La Industria de la Construcción de Obras Subterráneas y la Ingeniería necesaria para implantarla, conocerá una gran auge en todo el Mundo a lo largo del siglo XXI, en el que se harán realidad proyectos muy importantes como: El Enlace fijo España-Marruecos con la construcción del túnel de Gibraltar, el Paso Central de los Pirineos con la construcción del Túnel ferroviario de Vignemale, la conexión Transalpina Lyon-Turin, la conexión Italia-Austria por el paso de Brenner, la Unión Interhemisférica, USA-Rusia, bajo el estrecho de Bering, la Autopista Euro-Asiática y el Enlace Japón-Corea del Sur, entre otros.

Este auge de las obras subterráneas, se verá acrecentado por la demanda de soluciones a la problemática que plantea el tráfico de las grandes ciudades, el uso creciente del espacio subterráneo en el medio urbano y la realización de conexiones rápidas interurbanas.
2. EL FUTURO DE LAS OBRAS SUBTERRÁNEAS

2.1. DEMANDA CRECIENTE DE LAS OBRAS SUBTERRÁNEAS.

A escala mundial son varias las demandas actuales que el desarrollo de las naciones plantea a los Organismos Nacionales y Supranacionales, en relación con la movilidad de los ciudadanos y el transporte de todo tipo de productos manufacturados y mercancías dentro de sus propios territorios y a través de otros países de su área económica de influencia.

El proceso continuo del desarrollo integral de los pueblos: social, cultural y económico exigen la desaparición de las barreras existentes entre ellos, mediante el desarrollo necesario de comunicaciones que permitan incrementar las relaciones entre los ciudadanos del mundo.

El establecimiento de nuevos lazos de comunicación exigirá, en un futuro más o menos cercano, de menor a mayor escala, la realización de uniones fijas entre territorios nacionales próximos, continentales y hemisféricos.

En el momento presente se está empezando a hablar, y en algunos casos con estudios preliminares ya realizados; de megaproyectos como: El Enlace fijo España-Marruecos con el túnel de Gibraltar, el Proyecto Ferroviario Europeo de Alta Velocidad de Conexión Transalpina Lyon-Turín, el Proyecto de Autopista Euro-Asiática, el enlace fijo entre Japón y Corea del Sur, el enlace Interhemisférico Estados Unidos-Rusia a través del Estrecho de Bering.

Estos proyectos, en un pasado muy reciente, solo han tenido cabida en algunas mentes clarividentes dotadas de grandes dosis de imaginación y de creatividad.

Pues bien, estos megaproyectos han comenzado a pasar de estas mentes privilegiadas, a ser consideradas por algunos Gobiernos como respuestas válidas a las demandas de desarrollo que sus respectivos países van exigir en un próximo futuro.

Otro tipo de proyectos menos fantásticos será necesario realizar también para conseguir la adecuada vertebación territorial de los distintos países y la movilidad que demandan las grandes ciudades.

Para hacer frente a estos retos deberá acometerse, en los próximos años, la construcción de un número importante de túneles y obras subterráneas en todo el Mundo.
En el ámbito de la Unión Europea, la política de Infraestructura del Transporte, en la que se incluyen los proyectos más importantes como: *La Red Trans-Europea de Carreteras (TREN) y las Redes Trans-Europeas de Transporte, (TEN-T)*, implican la construcción de unos 2100 Km. de túneles hasta el horizonte temporal de año 2030 y los países Europeos que mayor número de túneles construirán en los próximos 20 años son:

- España : 567 Km.
- Noruega: 481 Km.
- Islandia: 109 Km.
- Suecia: 63 Km.
- Escandinavia-Dinamarca: ~58 Km.

Algunos de los megaproyectos anteriormente enumerados, actualmente en fase de estudio de viabilidad exigirán, en los próximos 40-50 años, multimillonarias inversiones y largos plazos de ejecución que, en algún caso, superarán los 50 años.

La demanda creciente de espacio subterráneo, principalmente en las grandes ciudades, implicará también la construcción de túneles, recintos subterráneos y cavernas (Fig. nº 2).

![Figura nº 2: Construcción de auditorio subterráneo en el subsuelo de un hotel, Japón](image)

Esta demanda de espacio subterráneo urbano, viene motivada por varias razones entre las que destacan

- La escasez de suelo urbano.
- El alto valor económico del suelo urbano.
- Motivos medioambientales: ruidos, vibraciones, impacto ambiental.
• Motivos de seguridad en caso de accidente o sabotaje.
• La protección de la superficie de riesgos y/o molestias de determinados tipos de actividades.
• El almacenamiento de materiales menos deseados.
• De un modo creciente, diversos equipamientos urbanos como: instalaciones deportivas, galerías comerciales, aparcamientos, zonas de recreo, auditorios, centros de transformación eléctrica, centros de comunicaciones, centros de control, instalaciones de grandes edificios (energía, iluminación, aire acondicionado ...), zonas de almacenamiento, zonas de seguridad etc., serán ubicados en el futuro en el subsuelo de las grandes ciudades.

Por otra parte se estima que, de los túneles actualmente en servicio en la U.E., unos 512 túneles, con longitudes superiores a los 500 m, deberán ser reacondicionados y adaptados a las nuevas normativas antes de 2010.

En definitiva, la construcción de obras subterráneas experimentará, en las próximas décadas y durante el siglo XXI, un importante auge en todo el mundo.

Por lo que se refiere a la Unión Europea, la construcción subterránea representa una actividad vital desde el punto de vista social y económico, ya que involucra, en su actividad, una amplia gama de industrias y servicios como: fabricantes de vehículos y repuestos, empresas de comunicación y energía; compañías de seguros y de alquiler, organismos de investigación, etc.

LA construcción subterránea, junto con las industrias y los servicios involucrados indicados anteriormente, dan empleo a más de 14 millones de personas en Europa y contribuyen con un 11% al producto interior bruto europeo.

2.2. BENEFICIOS DE LA CONSTRUCCIÓN SUBTERRÁNEA

La construcción subterránea es necesaria y beneficiosa principalmente por las razones siguientes:

1. Permite realizar conexiones fijas y más fiables, entre continentes y entre países, salvando accidentes geográficos como: cadenas montañosas (Fig. nº 3A), estrechos (Fig. nº 3B), ríos, lagos etc.
2. Acorta los tiempos de transporte y reduce los costes de mano de obra y consumo de carburantes.

4. Ayuda a combatir eficazmente la congestión de tráfico, en especial en las grandes ciudades.

5. Produce un impacto medioambiental menor que las obras a cielo abierto.

6. Reduce la contaminación, principalmente, en las zonas urbanas.

Necesidad de una innovación tecnológica

La construcción subterránea mundial se mueve en un medio internacional muy competitivo.

La construccion subterránea europea tiene, a nivel internacional, unos competidores formidables como: Japón, Estados Unidos, Corea, Canadá, y Australia entre otros.

Estos países están invirtiendo en programas de Investigación e Innovación Tecnológica que les permite desempeñar el papel de líderes en el mundo.
Algunos de estos países, como Japón y Corea, han aprovechado la experiencia europea en la construcción de túneles, especialmente en los últimos 40 años. Ahora se encuentran, en muchos aspectos, tecnológicamente más avanzados que Europa.

En este contexto Europa se encuentra frente al reto de ser competitiva en el mercado internacional frente a estos países, en todos los campos y por tanto, en la construcción subterránea.

Esto exige de la U.E. una coordinación de esfuerzos en recursos humanos y en recursos financieros que permitan desarrollar programas de Innovación Tecnológica a corto medio y largo plazo (*Tabla nº 1*).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Objetivo</th>
<th>Innovación requerida</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>Ausencia de operararios dentro del túnel durante la construcción.</td>
<td>Trabajo de construcción totalmente automatizado controlado por control remoto.</td>
</tr>
<tr>
<td></td>
<td>Coste similar de las infraestructuras subterráneas y a cielo abierto.</td>
<td>Optimización del proceso de excavación, eliminación completa del comportamiento imprevisto del terreno.</td>
</tr>
<tr>
<td></td>
<td>Conocimiento completo del comportamiento de los servicios públicos subterráneos.</td>
<td>Sistemas inteligentes durante todo el ciclo de vida.</td>
</tr>
<tr>
<td>2020</td>
<td>Tuneladora Universal.</td>
<td>Tuneladoras capaces de trabajar en cualquier terreno sin paradas.</td>
</tr>
<tr>
<td></td>
<td>Completo conocimiento de las condiciones geológicas (“terreno transparente”).</td>
<td>Métodos y equipamientos innovadores de exploración geológica.</td>
</tr>
<tr>
<td></td>
<td>Avance tecnológico en el corte de rocas.</td>
<td>Nuevas tecnologías de corte (ej. Tecnología láser).</td>
</tr>
<tr>
<td>2010</td>
<td>Sistemas inteligentes de revestimiento.</td>
<td>Revestimiento con mecanismos de autocorrección en dependencia de las acciones del terreno.</td>
</tr>
<tr>
<td></td>
<td>Coste satisfactorio de los túneles de gran diámetro.</td>
<td>Tuneladoras para túneles de gran sección. Mejora de la tecnología de corte.</td>
</tr>
<tr>
<td></td>
<td>Equipos “inteligentes” capaces de auto-aprender.</td>
<td>Equipos capaces de realizar modificaciones automáticas a partir de los datos acumulados durante la construcción.</td>
</tr>
</tbody>
</table>

Tabla nº 1: Plan Estratégico de la Comisión Europea, horizonte 2030
3. FUTURAS TENDENCIAS EN LAS OBRAS SUBTERRÁNEAS

3.1. FASE DE PROYECTO

El proceso seguido, desde que se percibe la necesidad de construir una obra subterránea determinada hasta que ésta se construye, es largo y laborioso debiendo seguir un desarrollo lógico de las diferentes etapas, desde la etapa inicial de los estudios de prefactibilidad, pasando por las etapas intermedias de realización de los estudios geotécnicos necesarios, de los estudios medioambientales, y de la redacción de un anteproyecto, hasta la etapa final de la elaboración del proyecto constructivo.

Nos referiremos, ahora, a las futuras tendencias que seguirá el desarrollo técnico en la diferentes etapas del proceso y que tienen como objeto la adecuada caracterización de los terrenos, su previsible comportamiento, la identificación de los principales factores generadores de incertidumbre geológica, el adecuado tratamiento e integración de los datos obtenidos en el diseño, así como el impacto ambiental y la seguridad de la obra subterránea proyectada.

3.1.1 Investigación Geológica-Geotécnica

La investigación geológica-geotécnica que se realiza en la etapa de planificación de una obra subterránea debe adecuarse a la complejidad geológica y a las características de cada proyecto; de este modo se reducirán las incertidumbres geotécnicas y por tanto los sobrecostes, los incrementos de plazo y los posibles litigios durante la construcción.

La tendencia en los años venideros en relación con la investigación geológica y geotécnica pasará por los siguientes hitos:

1. Se incrementará el número de sondeos mecánicos realizados, llegando la longitud total perforada hasta alcanzar ratios máximos de 1,5 ml de sondeo/ 1ml de túnel.

Está bien documentado que, en caso de incertidumbres geológicas importantes, la aplicación de programas especiales de investigación, disminuyen los costes de construcción en una cuantía entre 5 y 10 veces el coste de la investigación adicional realizada, minimizando, además, los retrasos en el plazo de construcción y los potenciales conflictos y reclamaciones.
2. Se incrementará la investigación geológica y geotécnica de modo que represente hasta un 3% de los costes de construcción. En casos muy complejos este porcentaje podría llegar a superar el (8%).

3. Mejora de las técnicas de perforación y obtención de testigos de roca, incluyéndose en éstos los datos de su orientación.

4. Incremento de la perforación de sondeos mecánicos dirigidos para obtener un mayor conocimientos de las estructuras geológicas y testigos de roca orientados en la dirección del túnel.
5. **Incremento importante de las técnicas geofísicas** así como de otros métodos no destructivos, tanto de superficie como en sondeo, con una utilización a gran escala de los mismos.

Se desarrollarán herramientas de investigación del terreno más económicas y más fáciles de operar y de interpretar, que permitirán una mejor caracterización del macizo rocoso, mediante la obtención de una gran cantidad de datos a costes razonables.

Técnicas como: la detección lejana (Remote sensing) incluyendo la utilización del láser y el análisis multiespectral y la detección cercana (near surface imaging): imagen en sondeo, sísmica superficial y georadar, serán de uso generalizado en los próximos años.

El reto, con el desarrollo y utilización masiva de estas técnicas geofísicas, es hacer cada día "más transparente" la estructura rocosa del subsuelo con más y mejores métodos geofísicos.

6. **Perforación de galerías y/o pozos de reconocimiento**, debidamente instrumentados para reducir las incertidumbres, tanto geológicas como del comportamiento del macizo rocoso.

Algunos de los factores más importantes que incrementan las incertidumbres geológicas en las obras subterráneas son: una geología muy compleja, túneles largos y profundos de sección grande, la presencia de rocas blandas en proporciones significativas, la sismicidad del lugar y la posible presencia de aguas subterráneas y de gas.
7. El perfeccionamiento de las técnicas actuales y el desarrollo de nuevas técnicas de localización y evaluación de acuíferos subterráneos.

La presencia y el comportamiento de las aguas subterráneas es el factor de más difícil predicción y el que, sin embargo, puede tener una mayor incidencia durante la construcción.

8. Desarrollo de nuevas técnicas más fiables, precisas y económicas para la determinación de las tensiones naturales dentro del macizo rocoso que tienen una gran incidencia en el comportamiento de las excavaciones.

9. Mejora en la estimación de los tiempos de estabilidad de los distintos terrenos atravesados por la obra subterránea.

3.1.2 Ensayos de Laboratorio

En el campo de los laboratorios de rocas y suelos el reto de los años venideros se plantea en la mejora del conocimiento estructural de suelos y rocas así como en su modelización con los objetivos siguientes:

1. El desarrollo de herramientas técnicas nuevas más fiables para medir las propiedades de los macizos rocosos en general y de las rocas blandas en particular mejorando su caracterización geotécnica.

2. Profundizar en el conocimiento de materiales como arcillas, rocas blandas arcillosas, suelos cementados, así como espumas y otros materiales que desarrollan comportamientos reológicos.

3. Profundizar en el conocimiento de la trasmisibilidad de los fluidos a través de medios porosos y de rocas fracturadas mediante el análisis de imágenes de resonancia magnética.

4. Desarrollar modelos de suelos y rocas más afinados y realistas que permitan obtener unas previsiones más reales de su comportamiento.

3.1.3 Mecánica de Rocas

La mecánica de rocas tiene un carácter interdisciplinar, y, sin duda, experimentará un importante desarrollo durante el siglo XXI, para mejorar el conocimiento en sus áreas críticas.
En relación con la construcción subterránea y la ingeniería de túneles las áreas críticas son:

3.1.3.1 Caracterización del macizo rocoso

Los macizos rocosos son de naturaleza compleja con largos y complicados historiales geológicos; una caracterización y una modelización más precisa permitirá una mejor predicción del comportamiento del macizo rocoso.

La mejora en la caracterización de los macizos rocosos se conseguirá con la utilización de las técnicas siguientes:

Métodos Directos

- **Escáner digital en sondeos** (Digital Borehole Scanner, DBS) que proporciona imágenes ópticas de alta definición de las paredes del sondeo. Con esta técnica es posible observar las alteraciones de las fracturas en las paredes del sondeo, el tipo de relleno y la rugosidad de la superficie de las fracturas.

- **Técnicas acústicas y eléctricas** para observar las fracturas en los sondeos.

- **Métodos hidráulicos** para investigar la circulación de fluidos a través de las fracturas.

Métodos Indirectos

En un futuro es previsible un incremento en la utilización de métodos indirectos (Remote sensing):

- **Métodos elásticos**: reflexión sísmica, perfil sísmico vertical (VSP), reflexión en sondeo (cross-hole) y registros acústicos, métodos eléctricos y electromagnéticos (sondeos eléctricos, profiling y tomografía), metodología con radar (penetración con radar, radar en sondeo, tomografía con radar) y registros convencionales de sondeos (neutrón, gamma, temperatura, calibre, medidor de flujo)
En particular los métodos sísmicos experimentarán un importante desarrollo en la caracterización del comportamiento mecánico de grandes volúmenes de roca mediante su respuesta deformacional, utilizando frecuencias mucho más altas.

En definitiva, se incrementará el uso de los métodos geofísicos existentes para mejorar la cuantificación de la densidad de fracturación y la permeabilidad en zonas profundas del macizo rocoso.

También se perfeccionarán las técnicas geofísicas actuales mejorando su resolución y aportando nuevas informaciones adicionales.

3.1.3.2 Modelización del macizo rocoso

La caracterización y modelización de los macizos rocosos seguirá nuevos caminos en un futuro desarrollo, mediante la aplicación de nuevos campos del conocimiento científico como: la mecánica cuántica, la teoría del caos, el concepto de redes neuronales y el modelo lógico de predicción en entornos con incertidumbres, como la lógica difusa (fuzzy logic).
3.1.3.3 La incertidumbre en los datos

La caracterización, modelización y análisis de los macizos rocosos están sujetas a incertidumbre; está incertidumbre es tanto mayor cuanto mayor es la complejidad del macizo rocoso que debe caracterizarse.

Aunque se obtengan gran cantidad de datos de un macizo rocoso, estos no permitirán eliminar todas las incertidumbres. Hay incertidumbres en el propio macizo rocoso, en la obtención de datos, en la testificación y en los modelos de predicción. Esta incertidumbre puede ser acumulativa y puede representar un problema, sobre todo, en macizos rocosos muy complejos.

Para manejar y paliar esta incertidumbre, en un futuro próximo se utilizarán modelos lógicos como los indicados en el punto anterior.

En un futuro próximo será práctica habitual incluir las incertidumbres en los procesos de decisión, mediante la utilización de procedimientos derivados de campos como el cálculo de probabilidades, la estadística y el análisis de riesgos.

3.1.3.4 Otras Áreas críticas que es necesario desarrollar.

En los próximos años y a lo largo del siglo XXI será necesario profundizar en el conocimiento de determinadas áreas críticas relacionadas con la mecánica de rocas y suelos y con las técnicas de construcción como:

- Predicción del mecanismo de rotura de macizos rocosos con propiedades variables.
- Clarificación de las propiedades y los mecanismos de rotura de los macizos rocosos relacionados con el factor tiempo.
- Relacionar los mecanismos de rotura de los macizos rocosos con las tensiones in situ dentro del mismo.
- Desarrollo de programas de cálculo que relacionen características y propiedades estructurales de los macizos rocosos.
- Perfeccionar la práctica de la toma de muestras de rocas y suelos.
- Mejora en el conocimiento del mecanismo de interacción de las herramientas de corte, picas y discos con el terreno en el proceso de rotura.
- Desarrollo de técnicas fiables de uso rápido y económico para la caracterización y la determinación de las propiedades estructurales del macizo rocoso.
- Mejora de métodos de medición de las tensiones in situ.
- Mejora del conocimiento del efecto del paso del tiempo sobre las excavaciones.
- Distribución de la presión hidráulica a través de las juntas del macizo y su disipación a lo largo de ellas.
- Mejora de la imágenes en sondeo.
- Caracterización más precisa de macizos rocosos estratificados y anisotrópicos.
- Caracterización y testificación más precisas de las rocas blandas.
- Perfeccionamiento de los métodos de excavación de rocas en condiciones de frente mixto y variación rápida en sus propiedades.
- Desarrollo de nuevos métodos de excavación en terrenos con tensiones elevadas.
- Mejor conocimiento y evaluación de la influencia del agua en la construcción de las obras subterráneas y desarrollo de nuevos métodos y técnicas para paliar sus efectos.
- Desarrollar metodologías de toma de decisiones de las incertidumbres con estimaciones de riesgo.
- Desarrollo de técnicas más seguras, eficaces y económicas para la construcción de túneles en suelos y rocas blandas.
- Evaluación adecuada del efecto que las propiedades del macizo rocoso tienen en el rendimiento de las tuneladoras.
- Cuantificación más precisa del efecto que las filtraciones de agua subterránea tienen en la construcción de túneles en terrenos blandos.

El mejor conocimiento y cuantificación de las áreas críticas anteriormente enumeradas, redundará, en un futuro, en una construcción subterránea más segura y económica con un acortamiento de los plazos de ejecución.

3.1.4 Ingeniería de Proyectos

La Ingeniería de Proyectos, en relación con las obras subterráneas, está inmersa en el mismo proceso evolutivo continuo que sigue la Ingeniería Civil en general con las especificidades propias inherentes a su especialización.

Destaca una marcada tendencia hacia una especialización creciente en disciplinas relacionadas con la Ingeniería Subterránea como: la
ingeniería geológica, la mecánica de suelos y rocas, la geofísica, la hidrogeología, la ingeniería de computación y de cálculo de estructuras, la ingeniería de métodos constructivos y de instalaciones de seguridad, y la ingeniería medioambiental entre otras.

Esta especialización continua y creciente durante los años venideros viene obligada por las nuevas exigencias que plantea la sociedad en aspectos vitales y que pueden traducirse, de un modo simplificado, en que las obras subterráneas proyectadas y construidas sean seguras, respetuosas con el medio natural y que sus costes de construcción tiendan a igualarse con los costes de construcción de las obras a cielo abierto.

Este objetivo únicamente podrá alcanzarse mediante un desarrollo espectacular y continuado de nuevas tecnologías aplicadas a la construcción de obras subterráneas, a la seguridad de las mismas durante su vida útil y a la consecución de una mínima afección al medio ambiente.

Citaremos algunas de las áreas que van a experimentar un mayor desarrollo a lo largo del siglo XXI.

3.1.4.1 Bases de datos Inteligentes

Se generalizará el uso de sistemas centralizados expertos de almacenamiento de la información, que almacenan y realizan un tratamiento previo de los datos, detectando posibles datos erróneos, anomalidades, excepciones, etc. Utilizando datos con su situación espacial incorporada, es posible generar modelos tridimensionales que permitan la generación más fácil y completa de planes bidimensionales (plantas, alzados, secciones) con posibilidad de incluir propiedades y parámetros. Estos sistemas permitirán también realizar funciones de distribución de parámetros y caracterizaciones por zonas. Toda esta información así tratada alimentará otras herramientas como: programas de cálculo de estabilidad, de análisis de riesgos.... Estos programas informáticos llamados "inteligentes" tienen la capacidad de adquirir experiencia con su uso y permiten mejorar y afinar en el tratamiento de los datos.

3.1.4.2 Modelización y Cálculo

En los últimos años los cálculos estructurales relacionados con las obras subterráneas han experimentado un importante desarrollo,
principalmente debido a la mejora de la potencia de los ordenadores. Sin embargo, los modelos disponibles son imperfectos ya que no consideran el terreno real con sus juntas, fracturas, planos de estratificación y otras discontinuidades que aparecen muy a menudo en las estructuras geológicas y que tienen una gran influencia en el comportamiento de los macizos rocosos.

Hoy en día nos encontramos en plena expansión de la utilización de cálculos tridimensionales en modelos continuos. Una simulación realista de la construcción de un túnel, por ejemplo, tiene un marcado carácter tridimensional. Algunas de las modelizaciones no realistas que se asumen y que se utilizan muy a menudo son las siguientes:

- Los modelos continuos que no tienen en cuenta las discontinuidades y la formación de bloques en los macizos rocosos.
- La modelización no realista del comportamiento post-rotura.
- El uso de modelos visco-plásticos para macizos rocosos fracturados.
- La asunción de un comportamiento elástico del hormigón, cuando este tiene un comportamiento que es acusadamente no lineal y además dependiente del tiempo.
- La modelización inadecuada de los bulones con lechada.
- La no consideración de la variable tiempo en el comportamiento del terreno.

¿Cuál será la evolución de los cálculos de las obras subterráneas en el próximo siglo? Parece claro que uno de los mayores problemas es como considerar las incertidumbres inherentes al modelo geológico. Será necesario realizar una mejor caracterización del mismo y una mayor interacción con los modelos numéricos que permita que los datos sean tratados por el ordenador directamente. Los datos geológicos se obtendrán, en un próximo futuro, mediante la aplicación de principios fotogramétricos usando modelos digitales para las propiedades del terreno.

Los modelos estructurales de los macizos rocosos son muy complejos y los ordenadores están muy lejos todavía de resolver, con precisión matemática, todas las relaciones y ecuaciones que están involucradas en el comportamiento de un terreno que tiene múltiples fracturas, discontinuidades, agua, etc.
En el horizonte del año 2025 los ordenadores cuánticos, 1000 veces más potentes que los actuales, serán capaces de abordar estos cálculos.

Figura nº 7: Estudio de cuñas, mediante diferencias finitas, de un túnel en un macizo fracturado

Para mejorar los modelos será necesario investigar y utilizar los llamados sistemas expertos, que son capaces de, sin necesidad de utilizar el enorme número de datos necesarios para describir y modelizar con exactitud un sistema, en este caso un macizo rocoso, lograr un resultado válido.

Una de las disciplinas matemáticas, que ayudará a realizar una mejor modelización del macizo rocoso, es la teoría de la "lógica difusa", traducción del inglés fuzzy logic. La teoría de la lógica difusa permite describir un sistema complejo, como es el de un macizo rocoso, sin necesidad de disponer de la gran cantidad de información, necesaria para caracterizarlo con absoluta precisión, utilizando un menor número de datos pero que permiten su caracterización con una precisión suficiente.

Datos como las densidades de fracturación, las direcciones de las mismas, las cantidades aproximadas de agua, los tipos de materiales, su distribución, serán necesarios para obtener buenos resultados, sin necesidad de tener que precisar con exactitud las características de todas y cada una de las fracturas o la cantidad precisa de agua en un determinado punto, por poner un ejemplo.

Para la realización de estos modelos será necesario crear grandes bases de datos con las observaciones del comportamiento de los macizos rocosos durante la construcción y la verificación de los diseños adoptados, de modo que estos datos puedan ser procesados por estos sistemas expertos y aplicados a la modelización numérica.
Además de todo el desarrollo encaminado a resolver las incertidumbres del medio en el que se desarrolla la construcción de una obra subterránea y la mejora de los modelos aplicables, es necesario resolver también, de una manera más precisa, el comportamiento de los elementos estructurales aplicados a su estabilidad.

Será necesario profundizar en el conocimiento del comportamiento del hormigón proyectado, desarrollando sofisticados modelos mecánico-termo-químicos, no lineales, que tengan en cuenta todos los aspectos del mismo. Igualmente deberán desarrollarse modelos que reproduzcan satisfactoriamente el funcionamiento e interacción de la lechada de los bulones con el terreno.

Por último, el desarrollo futuro del software mejorará la visualización y la presentación de los resultados numéricos, con la incorporación de la realidad virtual, de modo que éstos sean más fáciles de interpretar, incluso para cualquier técnico no especializado.

3.1.4.3 Ingeniería de Decisión. Análisis de Riesgos

La ingeniería de la decisión y el análisis de riesgos aplicada a las obras subterráneas experimentará en los próximos años una mejora de la metodología actual disponible con la puesta en disposición de modelos mas perfeccionados, junto con la implantación y utilización generalizada de los mismos.

Los sistemas de ayuda a la toma de decisión utilizarán árboles de decisión y redes neuronales, para que ésta se realice mediante un criterio preestablecido, gestionado por potentes sistemas informáticos inteligentes que podrán ir aprendiendo de las distintas experiencias y ajustando automáticamente los citados criterios para las siguientes tomas de decisiones.

Las variables del modelo responden a distribuciones estadísticas y el modelo proporciona resultados también en forma de distribuciones estadísticas.

Así mismo el modelo realiza un análisis de sensibilidad de las diferentes variables consideradas en el modelo, identificando los factores más importantes y las incertidumbres existentes, cuantificando la variabilidad de los parámetros en los modelos de análisis.

El modelo de análisis de riesgos relaciona las curvas de distribución de las distintas propiedades como: materiales, datos geológicos, datos de métodos constructivos, mediante algoritmos basados en teorías del tipo Monte Carlo, Hipercubo latino, Fuzzy, Cadenas de Markov, etc., generando como resultado distribuciones estadísticas.
de coste-plazo, sensibilidad de los parámetros, identificación de zonas problemáticas en un túnel, etc.

Estos modelos de toma de decisión necesitan alimentarse de una amplia y fiable base de datos; cuanto mejor sea la base de datos disponible, mejores serán las estimaciones realizadas.

Esta base debe ser alimentada con datos reales de obras subterráneas realizadas anteriormente en condiciones similares al proyecto en estudio, y deberá suministrar datos de rendimientos, consumos, incidencias, etc. La robotización y automatización de la maquinaria empleada permitirá que el proceso de alimentación de la base de datos se realice con un registro prácticamente continuo y de manera totalmente automática.

Durante la fase de ejecución del proyecto se sustituirán los datos estimados inicialmente por los reales obtenidos, realizándose nuevas estimaciones, para la obra restante, cada vez más precisas y con menores incertidumbres, pasando los datos reales a una base centralizada.

Estos modelos permitirán también realizar diseños de nuevos proyectos utilizando la experiencia acumulada de proyectos ya realizados e integrando los modelos en el seguimiento de la ejecución y la supervisión de la obra.

A continuación se representa alguno de los posibles resultados obtenidos aplicando un modelo de análisis de riesgos al caso concreto del túnel base de Pajares (Figuras 8 y 9).

Figura n° 8: Perfil geológico del túnel de Pajares y diagrama constructivo espacio tiempo
3.1.4.4 Seguridad

Los aspectos relacionados con la seguridad de la obra subterránea, durante su construcción y durante su utilización, tienen una relevancia crucial y el objetivo permanente durante el presente siglo, será mantenerla en los niveles adecuados compatibles con un análisis coste-beneficio, máximo nivel de seguridad con el menor coste posible.

Los mayores factores de riesgo durante la construcción son: la presencia de gases por la potencialidad de producirse explosiones, la posibilidad de entradas de agua con caudales y presiones importantes y las excavaciones profundas en formaciones de rocas blandas con posibilidad de que puedan producirse deformaciones importantes.

Durante los periodos de construcción y utilización, el mayor riesgo suele sobrevenir como consecuencia de algún incendio en su interior.

La seguridad pasiva aportada por la utilización, en espacios subterráneos, de nuevos materiales más duraderos, de una mayor resistencia estructural y de una mayor resistencia al fuego, será un elemento importante para alcanzar los objetivos de seguridad deseados.

Un sistema de evacuación diseñado para situaciones de emergencia, eficaz y fiable que permita la autoevacuación ordenada de las personas en el tiempo adecuado, incluso de las que tienen movilidad reducida y el fácil acceso de los equipos de rescate, será otro de los
elementos esenciales para alcanzar los niveles de seguridad deseados.

Además, un ambiente habitable en su interior, incluso de confort en determinados usos del espacio subterráneo, tanto en situaciones normales como en situaciones de emergencia, exige disponer de sistemas de instalaciones cada vez más eficaces y de funcionamiento y de gestión más sencillas y fiables. Citaremos algunos de los sistemas que nos parecen más fundamentales y que tienen que mejorar en sus prestaciones, con unos consumos de energía y costes menores.

1 La Ventilación

El sistema de ventilación tanto normal como de emergencia, necesita mejorar en varios aspectos como:

a) Equipos de ventilación más eficientes, de menor consumo energético y que ofrezcan los niveles de resistencia al calor suficientes para garantizar, durante el periodo necesario, el autorescate y rescate de las personas.

b) Ampliar el campo de aplicación de la ventilación longitudinal a túneles de una mayor longitud; con el estado actual de la tecnología se pueden ventilar tramos de hasta 18 Km. desde un punto de aspiración de aire fresco (tecnología desarrollada en Japón).
c) Los sistemas de ventilación, desde los más sencillos a los de mayor complejidad, tienen que ser gestionados mediante programas informáticos inteligentes, expertos en el manejo de situaciones de incertidumbre, utilizando modelos fuzzy logic, neuronal etc, para evitar que los operarios puedan tomar decisiones tardías o erróneas por incapacidad de procesar toda la información disponible.

Para conseguir un funcionamiento seguro, es necesario dotar al espacio subterráneo de una multitud de microsensores muy robustos y de bajo coste, capaces de enviar toda la ingente información generada a los ordenadores del centro de control que, mediante estos programas inteligentes, son capaces, incluso, de aprender de sus propios errores y de tener en cuenta, en futuras tomas de decisión, la experiencia obtenida en pasadas actuaciones.

En espacios subterráneos complejos, será necesario desarrollar técnicas fiables de acantonamiento de humos y gases, de modo que quede controlada y limitada su difusión a través del espacio subterráneo, mediante cortinas de agua y/o aire u otras técnicas eficaces.

La Iluminación

El nivel de iluminación dentro de un espacio subterráneo, tiene una gran importancia para conseguir una buen nivel de confort y de seguridad para sus usuarios.

Se ha demostrado que, en túneles, el nivel de luminancia juega un papel importante en la seguridad de la conducción dentro del túnel.
Es necesario continuar el esfuerzo innovador para mejorar el rendimiento de las luminarias, para disminuir su consumo energético, elevando al mismo tiempo los niveles de luminancia con la consecución de revestimientos, no porosos, más lisos, más resistentes al ataque físico-químicos, de tonalidades claras y fáciles de limpiar.

Es sabido que las lámparas normales pierden el 80% de la energía que consumen en calor. Actualmente se dispone de luminarias de bajo consumo energético mediante la utilización de filamentos de nanotubos de carbono puro.

En túneles largos (>1 Km) será muy conveniente que la superficie de rodadura no sea de colores oscuros, sean fáciles de limpiar y que no contengan betunes ya que, en caso de incendio, este genera una gran cantidad de humos muy densos y viscosos que impiden la visibilidad.

3 Los elementos de construcción resistentes al fuego

El desarrollo creciente de nuevos materiales compuestos, permitirá emplear, dentro de los espacios subterráneos, materiales más resistentes al fuego y a los ataques químico-físicos, utilizando diversos tipos de fibras de polipropileno, de vidrio, de carbono, etc. y de materiales cerámicos en tratamientos superficiales.

Dejarán de utilizarse todos los elementos o componentes que contengan materiales que, en caso de incendio, liberen gases tóxicos o nocivos, gases en gran cantidad o gases muy densos y viscosos.

4 El control integrado de las instalaciones

Se ve muy necesario realizar un esfuerzo continuado por conseguir una racionalización en la utilización y gestión de todas la instalaciones dispuestas dentro del espacio subterráneo como: control, señalización, ventilación, iluminación, drenajes y agotamientos, comunicación, detección automática de incidentes etc.

Es necesario disponer de un centro de control principal único, en el que se centralice y gestione, mediante un sistema informático inteligente, toda la información enviada por los equipos de control y por los sensores instalados.

5 La evaluación de Riesgos

El diseño y dimensionamiento de los elementos y sistemas de seguridad, se desarrollaran de acuerdo a las necesidades y peculiaridades de cada proyectos y aplicando las normativas y
recomendaciones básicas vigentes nacionales, comunitarias, e internacionales.

El diseño de estos elementos y de los sistemas de seguridad, debe concluir con una evaluación de riesgos en diversos escenarios, mediante programas de evaluación de riesgos que comprueben que el diseño de las obras y de las instalaciones proyectadas es eficiente y garantiza el nivel de seguridad adecuado para unas condiciones determinadas de utilización del espacio subterráneo.

3.1.4.5 Instrumentación y Auscultación

La Instrumentación y la Auscultación de la obra subterránea es una actividad muy importante que permite conocer, en cualquier momento, la respuesta del terreno a la excavación realizada, los reajustes tensionales y las deformaciones provocadas por la obra ejecutada en el conjunto terreno-revestimiento.

Mediante la Instrumentación y Auscultación adecuadas, se conocen y controlan, tanto en la etapa de construcción como durante el periodo de servicio de la obra subterránea, los datos de deformaciones y tensiones, entre otros, que permiten el conocimiento, en tiempo real, de las afecciones al medio circundante, de la estabilidad de la excavación, de las deformaciones y tensiones de los sostenimientos y revestimientos, así como del grado de deterioro de éstos a lo largo del tiempo.

La Instrumentación y Auscultación permiten realizar un proceso iterativo de retroanálisis de la obra subterránea durante su construcción, sustituyendo en los cálculos de estabilidad realizados los datos estimados, principalmente de los parámetros resistentes y deformacionales del terreno, presiones hidrostáticas..., por los datos
reales obtenidos y, a lo largo del tiempo, conocer la evolución de estos, las condiciones de trabajo de los revestimientos y el deterioro de éstos.

La Instrumentación y Auscultación evolucionará en la dirección de incrementar los puntos de medición, construyendo sensores y aparatos más simples, más sencillos de manejo, más fiables y de un menores costos, con una mayor rapidez de las mediciones realizadas (sin interferencias con las actividades que se realizan); la medición de parámetros relacionados con las oscilaciones de los niveles freáticos, los asientos en superficie, las afecciones a edificios y servicios urbanos, el control de las filtraciones hacia el espacio subterráneo, el control de la contaminación y la química del agua subterránea que afecta a la tasa de corrosión de las estructuras subterráneas.

La Auscultación de la obra subterránea evolucionará hacia una ampliación masiva de puntos de medida con la utilización de equipos informatizados y robotizados de auscultación remota (cuerda vibrante, estaciones topográficas motorizadas...) que configurarán una adecuada red de auscultación con un sistema remoto de lectura; estos datos serán almacenados y procesados mediante programas "inteligentes", desarrollados con las técnicas de la inteligencia artificial, que serán capaces de aprender de sus errores integrando su propia experiencia acumulada. La nueva instrumentación utilizará la fibra óptica para medir tensiones y deformaciones con una mayor precisión y economía. El desarrollo de nuevos microsensores inalámbricos de bajo coste permitirá, en un futuro no lejano, realizar una instrumentación geotécnica y de estructuras que las haga "inteligentes", lo que hará que la obra subterránea esté adecuadamente controlada durante su construcción y durante su vida útil.

3.1.4.6 Utilización de Nuevos Materiales

El diseño y la construcción de obras subterráneas en los años venideros utilizará nuevos materiales de un modo creciente. Los nuevos requerimientos para las obras subterráneas impulsarán, en los próximos años, la búsqueda de nuevos materiales que aporten mayores niveles de seguridad y una mayor durabilidad en comparación con los materiales que se vienen utilizando tradicionalmente en la construcción de túneles. La ingeniería de nuevos materiales experimentará un auge espectacular a lo largo de este siglo (Tabla 2).
1 Materiales Compuestos (Composites)

La utilización del acero se verá disminuida, en detrimento de materiales más ligeros, estructuralmente tanto o más resistentes y con mayor protección a la corrosión, al desgaste, al ataque químico y al fuego. Nuevos materiales compuestos, como el FRP (fiberglas reinforced plastic), permitirán diseñar materiales con un rango importante de resistencias y propiedades físicas. Una extensa diversidad de materiales se conseguirá combinando una amplia variedad de plásticos como matriz del material compuesto (políesteres no saturados, resinas epoxy, fenólicas), adicionando a estos, aditivos y fibras de altas prestaciones (de vidrio, de carbono ... hasta 14 tipos de fibras). Estos materiales compuestos, permitirán realizar formulaciones ignífugas con una producción de humos de poco volumen y de baja densidad y toxicidad.

2 Nanomateriales

La nanotecnología, dentro de la que se agrupan ciencias como la física, la química, la medicina y el medio ambiente, manipula uno a uno los átomos de la materia, formando compuestos moleculares de propiedades desconocidas hasta ahora, que revolucionarán la economía, los sistemas de producción y el nivel de vida de un futuro próximo. Esta ciencia permitirá la construcción de nanomáquinas, nanorobots, que podrán autoreproducirse, cambiar y autodestruirse, y miniordenadores inteligentes (Figura nº 14).
Materiales para un futuro, basados en esta tecnología, serán los nanocompuestos que proporcionarán mayores prestaciones aún que los materiales compuestos, al sustituir las fibras por partículas del tamaño de una micra distribuidas uniformemente dentro de una matriz, ofreciendo propiedades como un menor peso, una mayor resistencia mecánica y una menor alterabilidad.

3 Materiales Cerámicos

Estos materiales, de bajo coste, ofrecen resistencias, a la corrosión y a las altas temperaturas, muy elevadas.
4 Nuevos Hormigones

Los hormigones, por su potencialidad y versatilidad, continuarán utilizándose habitualmente aunque ofrecerán mayores prestaciones que los actuales.

a) Hormigones Poliméricos (CP): materiales compuestos más resistentes y ligeros que los hormigones tradicionales y con una mayor resistencia al fuego.

b) Hormigones reforzados con fibras (FRC): Permiten diseñar hormigones con una mayor resistencia a la rotura y un mejor control del mecanismo de rotura, adaptándose al régimen de cargas transmitidas por el terreno y adecuando su resistencia a la tracción y al corte, su rigidez, su ductilidad y su absorción de energía, además de otras propiedades, a las necesidades reales de cada caso. Para hormigones estructurales se utilizan las fibras de vidrio y de carbono.

c) Hormigones autocompactantes (SCC, Self-Consolidating Concrete): en un próximo futuro se generalizará el uso de estos hormigones que no necesitan realizar un vibrado durante su colocación y que presentan una mejor calidad superficial y una mayor durabilidad.

d) Nuevos hormigones proyectados: los hormigones proyectados evolucionarán hacia unas mejores prestaciones de resistencia en los momentos iniciales y de edad temprana, una mejor adherencia con rocas y suelos y una mayor integridad y durabilidad; estas nuevas características del hormigón proyectado y el uso de fibras y aditivos, permitirán a éste formar parte del revestimiento (Proyecto Europeo BRITE-EURAM).

e) Revestimientos inteligentes: la U.E. ha fijado como objetivo para el 2010, desarrollar revestimientos inteligentes que reaccionen de acuerdo a las acciones transmitidas por el terreno; esta posibilidad de autocorrección supondrá un avance importante en túneles y obras subterráneas profundas en rocas blandas, en las que el revestimiento tiene que absorber importantes deformaciones y solicitaciones.

En resumen, el desarrollo de nuevos materiales permitirá construir obras subterráneas más seguras, de una mayor durabilidad y más económicas considerando, no solo la
construcción, sino también la explotación y el mantenimiento.

Disminuirá el uso del acero en bulones, mallas, chapas, perfiles y se incrementará el uso de materiales compuestos (FRP) en reparación de túneles y revestimientos flexibles.

Se utilizarán hormigones auto-compactantes, con una menor retracción, más resistentes, de una mayor durabilidad, más impermeables y resistentes a la corrosión y al fuego, mediante la utilización de fibras y aditivos principalmente.

<table>
<thead>
<tr>
<th>Tipo de Material</th>
<th>Matriz: metálica o de materiales plásticos (resinas epoxi, fenólicas, poliesteres no saturados). Aditivos y fibras (acero, vidrio carbón); Altas resistencias, propiedades especiales.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compuestos / Composites (FRP)</td>
<td></td>
</tr>
<tr>
<td>Materiales Cerámicos</td>
<td>Muy resistentes a la corrosión y a elevadas temperaturas</td>
</tr>
<tr>
<td>Nuevos Hormigones</td>
<td>Hormigones poliméricos (CP): Más resistentes y ligeros; Mayor resistencia al fuego; Resinas/polímeros + cemento + fibras</td>
</tr>
<tr>
<td></td>
<td>Hormigones reforzados con fibra (FRC). Mayor resistencia a la rotura. Fabricación adecuada a las solicitudes que tienen que soportar</td>
</tr>
<tr>
<td></td>
<td>Hormigones autocompactantes (SCC). No necesitan vibrado; mayor durabilidad y mejor acabado superficial.</td>
</tr>
<tr>
<td></td>
<td>Nuevos hormigones proyectados: Mayor resistencia, más densos, menos porosos, mayor durabilidad, cemento sin yeso, más económicos y ecológicos.</td>
</tr>
<tr>
<td>Nanomateriales / Nanocompuestos</td>
<td>Horizonte 2020; sustitución de las fibras por partículas de tamaño inferior a una micra e, incluso de tamaño molecular, $(10^{-9}$ m). Mayor resistencia, mayor durabilidad, menos peso, más económicos, fabricación con propiedades determinadas, posibilidad de autogenerarse.</td>
</tr>
</tbody>
</table>

Tabla n° 2: Nuevos Materiales
3.1.4.7 Impacto sobre el Medio Ambiente

Toda obra subterránea ejerce un impacto sobre su entorno.

La Ingeniería de Proyectos de obras subterráneas, en el horizonte del siglo XXI, evolucionará hacia una más completa y minuciosa evaluación de las modificaciones que, sobre su entorno, introducirá la construcción de una obra subterránea concreta.

Deberán considerarse, con la verdadera importancia que tienen, las posibles alteraciones en la vulnerabilidad de los niveles freáticos y en la calidad de las aguas subterráneas; las afecciones en superficie, principalmente en obras subterráneas urbanas, a edificios, zonas arqueológicas, instalaciones y servicios; las afecciones al medio natural, principalmente en los accesos a las bocas y los accesos intermedios, en relación con el impacto a la biosfera, el impacto visual, las vibraciones, el ruido, la erosión del suelo y la contaminación de las aguas, de los suelos y de la atmósfera, tanto en su etapa de construcción, con en su etapa de utilización.

El proyecto de la obra subterránea deberá diseñar todas las medidas necesarias para minimizar el impacto medioambiental, que esta pueda producir.

Debe recoger medidas concretas y eficaces que permitan la reposición de los acuíferos, la minoración de las afecciones en superficie, la eliminación de cualquier tipo de contaminación que se genere durante la construcción y la utilización de la obra subterránea y las medidas correctoras para la restitución del medio natural (impacto visual, erosión, etc).

Los productos y materiales utilizados en la construcción de túneles no deberán ser potencialmente contaminantes, ni para los terrenos, ni para el agua subterránea ni para la atmósfera, lo que obligará a la fabricación de nuevos productos que cumplan con estas exigencias.

El agua subterránea de infiltración ejerce una gran influencia en la obra subterránea tanto durante su construcción, como durante su utilización. Las técnicas y los materiales de impermeabilización experimentarán una evolución permanente buscando una mayor eficacia, idoneidad y economía ante el objetivo de impedir que el agua de infiltración llegue hasta los revestimientos para evitar su contaminación y el deterioro de estos.

En las obras subterráneas en las que se permita el drenaje hacia ellas del agua, esta deberá ser adecuadamente captada, canalizada, embalsada en el exterior y tratada, antes de que se incorpore al sistema formado por las aguas superficiales, evitando siempre su contacto físico con el revestimiento.
En el futuro se prestará una atención creciente a las fluctuaciones del nivel freático y de la calidad del agua de filtración en las obras subterráneas así como a la minoración de asientos y daños en superficie principalmente en obras urbanas.

La contaminación ambiental que pueda producirse, como consecuencia de la construcción y de la explotación de la obra subterránea, deberá eliminarse allí donde ésta se produzca, asegurando también el adecuado emplazamiento y estanqueidad de las escombreras y la restitución, en la medida de lo posible, del entorno natural.

Hay una tendencia creciente a utilizar, siempre que sea posible, los materiales de excavación para agregados de hormigones o para rellenos y terraplenes, produciéndose así una economía en la construcción y una menor ocupación de terrenos destinados a vertederos.

3.2. FASE DE CONSTRUCCIÓN

Como respuesta a las demandas crecientes que plantea la movilidad de personas y mercancías en la aldea global, en que vivimos la construcción de obras subterráneas será, en muchos casos, la única manera de eliminar las barreras físicas existentes entre continentes, entre países y entre territorios de un mismo país y la manera de salvar del colapso nuestras grandes ciudades, bastantes de las cuales se convertirán en megaciudades en las próximas décadas.

Los importantes retos tecnológicos a los que se enfrenta la construcción de obras subterráneas de gran longitud y profundidad, submarinas o subacuáticas o bajo el subsuelo de nuestras ciudades en entornos que plantean con frecuencia grandes condicionantes, hacen que las técnicas de construcción de las obras subterráneas estén en constante desarrollo con el objetivo de hacerlas más seguras y menos costosas.

Este continuo desarrollo es promovido por la utilización de los nuevos avances tecnológicos emergentes que permitirán superar las dificultades técnicas actuales que plantea la construcción de los grandes proyectos subterráneos internacionales, muchos de los cuales se encuentran ya en fase de Estudio Previo, haciéndolos más seguros durante su construcción y explotación, menos costosos y con un menor impacto sobre el Medio Ambiente.

Se habla ya de la 3ª Revolución Industrial que se producirá a lo largo del siglo XXI de la mano de las nuevas Tecnologías: Ingeniería de materiales compuestos, la Mecatrónica y la Nanotecnología; cuyo
desarrollo permitirá una gran evolución de las técnicas aplicadas a la construcción de obras subterráneas.

Muchos son los campos y las actividades relacionadas con la construcción de obras subterráneas que van a participar de este desarrollo tecnológico que, sin duda, se experimentará a lo largo del siglo XXI.

En este documento destacaremos aquellas que, según la opinión generalizada entre los técnicos más prestigiosos de diversos países, van a experimentar un mayor desarrollo tecnológico durante el presente siglo.

3.2.1 Conocimiento del terreno

Antes de iniciarse la construcción de la obra subterránea se dispondrá, en un futuro próximo, de una mayor información y conocimiento de las características y comportamientos de los terrenos (rocas y/o suelos), así como del entorno en el que se va a construir esta.

Este mayor conocimiento será el resultado de una aplicación más intensiva y más adecuada a cada proyecto, de las campañas previas de investigación en campo y laboratorio como:

- Perforación de un mayor número de sondeos.
- Utilización más intensiva de métodos geofísicos en superficie y en sondeo.
- Sondeos direccionales con extracción de testigos orientados en la dirección de la obra subterránea.
- Utilización de la técnica del microtúnel para realizar perforaciones de pequeño diámetro ("1 m) paralelas a los túneles.
- Galerías de reconocimiento instrumentadas.
- Medición más precisa de las tensiones in situ.
- Realización de estudios hidrogeológicos con técnicas más resolutivas.
- Determinación de la presencia de gases.

Este mejor conocimiento del terreno y de su entorno natural, permitirá identificar y evaluar mejor los riesgos que conlleva su construcción, mediante programas de evaluación de riesgos en términos de coste-plazo y, en consecuencia, elegir los procedimientos constructivos más idóneos.
Sin embargo siempre van a subsistir algunas incertidumbres, tanto mayores cuanto mayor sea la complejidad del proyecto (grandes longitudes, grandes profundidades, geología compleja, túneles subacuáticos).

Para luchar contra estas incertidumbres, durante la etapa de construcción de la obra subterránea, tratando de evitar situaciones imprevistas que puedan conllevar riesgos y que, en cualquier caso, incidirían de un modo negativo en el progreso de los trabajos, será práctica habitual intensificar determinadas actividades como: realizar campañas de investigación complementarias desde superficie y desde el interior de la obra subterránea (sondeos desde superficie, sondeos de reconocimiento desde el frente, ensayos adicionales, geofísica desde el propio frente de excavación) y realizar una auscultación sistemática de la obra que se está construyendo (deformaciones y presiones sobre los sostenimientos).

Este esfuerzo adicional por obtener más información, permitirá, además de reducir riesgos, adecuar los diseños iniciales realizados en el proyecto a las situaciones reales, mediante la técnica del retroanálisis utilizando modelos más afinados y herramientas de cálculo más poderosas; todas estas actividades se realizarán durante la construcción de las obras.

3.2.2 Capacidades de técnicos y operarios

El personal técnico especializado que, en un próximo futuro, intervenga en el diseño y en la construcción de las obras subterráneas, formará un equipo interdisciplinar y altamente especializado, además de en las áreas tradicionales, en nuevas áreas del conocimiento técnico como: la robótica, el automatismo, el control remoto, la resistencia de nuevos materiales (materiales compuestos, compuestos mecatrónicos, nanocompuestos), la seguridad, el medioambiente, los sistemas de gestión de la calidad, los sistemas de comunicaciones, la electrónica, la gestión y la cuantificación de las incertidumbres (modelos neuronales, lógica difusa, etc).

En cuanto a los operarios y operadores especializados, su demanda y valoración serán crecientes y deberán poseer nuevos conocimientos y habilidades que les permita manejar, conservar y reparar la maquinaria y los equipos que incorporen los nuevos avances tecnológicos. Los conocimientos de mecánica tradicional y electricidad no serán suficientes, ya que las máquinas del futuro incorporarán nuevos componentes tecnológicos en el campo de: la mecánica, la electricidad, la electrónica y
la computación y que pasarán a ser elementos constitutivos de la propia máquina.

Los operarios no especializados deberán, también, adquirir unos conocimientos básicos que les permita familiarizarse con las nuevas tecnologías y poseer la experiencia y la destreza necesarias para realizar las distintas actividades que integra un ciclo de trabajo.

3.2.3 Maquinaria

La maquinaria para la excavación mecánica de rocas y suelos, tiene en la actualidad una gran incidencia y esta será en un futuro próximo aún mayor, sobre la construcción subterránea ya que, en gran medida, condiciona su viabilidad, su seguridad y su economía.

A lo largo de los años, desde la Revolución Industrial iniciada en Inglaterra S. XIX, la maquinaria ha venido, en general y la de túneles en particular, experimentando constantes avances tecnológicos, habiendo alcanzado un alto nivel de desarrollo en los últimos años del siglo XX, principalmente en las máquinas tuneladoras (topos y escudos).

Sin embargo en el último lustro se ha producido una deceleración en la incorporación de novedades tecnológicas importantes.

No obstante, el futuro desarrollo, de estas máquinas es muy prometedor y permitirá abordar la construcción de la obra subterránea con unos mayores niveles de seguridad y con unos costes menores que los actuales.

Por otra parte, este desarrollo hará posible realizar, durante el presente siglo, megaproyectos como los ya citados que, con el estado actual de la técnica, difícilmente podrían acometerse con las debidas garantías.

En un próximo futuro el desarrollo de la maquinaria tendrá como objetivos principales: la automatización casi total de los procesos de excavación, la robotización, la operación por control remoto, la utilización de nuevos materiales como componentes de las máquinas derivados de la industria militar y espacial, la utilización de útiles de corte de mayor capacidad, eficacia y con una mayor resistencia al desgaste, el control, en tiempo real, del funcionamiento de la máquina, la utilización de la tecnología "water jet" como herramienta complementaria en la excavación de rocas duras y abrasivas, el desarrollo de tuneladoras de cabezas de corte capaces de
detectar la zonas de roca más duras incrementando en ellas los empujes sobre los cortadores.

La aplicación de esta tecnología aportará las mejoras sustanciales siguientes:

a) **Incremento decisivo de la seguridad de los operarios**, al no verse obligado a tener que trabajar en el frente realizando actividades que entrañen riesgos como consecuencia de la implantación del automatismo, la robotización y el control remoto de las máquinas.

 El Plan Estratégico de la Unión Europea fija la automatización total para 2030.

b) **Incremento de los rendimientos**, el incremento de los rendimientos de las distintas actividades que constituyen el proceso constructivo se producirá como consecuencia del automatismo y la robotización de los procesos, de la utilización de cabezas de corte "inteligentes" en las tuneladoras, del trabajo contínuo de éstas, de la simultaneidad de las actividades de excavación y revestimiento, de la utilización de herramientas de corte más eficientes, más duras y tenaces y más resistentes al desgaste.

Los rendimientos de excavación de rocas duras y abrasivas cuyos máximos actualmente están entre 25-30m/día, podrán superar en los próximos años los 100m/día.

Las herramientas de corte, discos y pícas, mejorarán también su diseño, su geometría, su tamaño y su peso, (utilizando cortadores de menor diámetro), su disposición y acoplamiento en la cabeza y su eficacia, (con la utilización de discos vibratorios u oscilantes). Una propuesta tecnológica actual en esta dirección es el cortador de disco oscilante (Oscillating disc cutting, ODC) que desarrolla el australiano David Sugden, en la que el cortador incide oblicuamente sobre la superficie de la roca, induciendo en ella roturas de tracción con una importante reducción de la energía de rotura necesaria para producir la rotura de la roca. *El último Plan Estratégico de la U.E. fija para 2010 la mejora de la tecnología de corte de rocas.*

La tecnología del chorro de agua a alta presión (water jet) que se utiliza actualmente en el corte industrial de rocas, en
demoliciones, en corte de diversos materiales podrá, en los próximos años, contribuirá, con los nuevos desarrollos a mejorar el proceso de excavación de rocas duras y abrasivas.

c) **Reducción de los costes.** uno de los principales objetivos para los próximos años, es la reducción de los costes de la obra subterránea de modo que se aproximen a los de las obras en superficie.

Estos costes deben calcularse siempre sobre el ciclo total de vida de la obra subterránea, incluyendo los costes de construcción, de explotación y de mantenimiento. Es necesario evaluar también en términos económicos las ventajas de la obra subterránea: su menor vulnerabilidad, el menor impacto ambiental, así como el incremento del valor del suelo que induce en zonas urbanas etc.

El Plan Estratégico de la UE fija para 2030 el objetivo de que las obras subterráneas tengan un coste similar al de las obras en superficie.

Esta reducción de coste vendrá motivada por diversas causas como: la reducción de la mano de obra y la utilización de una mano de obra altamente especializada, el incremento de los rendimientos y de los ritmos de excavación, la reducción de los consumos de energía, la reducción del consumo de materiales fungibles (cortadores..) y de piezas de repuesto de las máquinas, la construcción de máquinas más ligeras, menos costosas y con menores costes de mantenimiento, la utilización de nuevos materiales en la fabricación de los componentes de las máquinas; finalmente las nuevas máquinas tendrán una mayor eficiencia y fiabilidad.

Las tuneladoras de los próximos años serán más versátiles y polivalentes que las actuales en las que los diseños son específicos para cada proyecto, lo que supone un encarecimiento de la máquina.
En un próximo futuro las máquinas se construirán con un diseño básico común que las permitirá excavar con diferentes diámetros y a las que se les agregaran diversos elementos y sistemas reemplazables y específicos para cada modalidad de funcionamiento adecuado a las características de cada proyecto.

Se avanzará en el diseño de una máquina polivalente capaz de trabajar en terrenos de características muy diversas dentro de un mismo proyecto, desde rocas duras y abrasivas hasta suelos permeables con carga de agua, mejorando los actuales diseños de los escudos mixtos multimodales (presión de tierras / presión de lodos / TBM).

La configuración de las tuneladoras permitirá realizar excavaciones con condicionantes muy variados: perforaciones ascendentes, descendentes, en espiral con capacidad para trazar curvas de diámetro muy pequeño en vertical hacia arriba y hacia abajo; una única tuneladora podrá perforar con diámetros distintos, incluso con perforaciones oblicuas o perpendiculares a la perforación principal.

Esta tecnología se ha desarrollado en Japón y en los años venideros evolucionará y se ampliará su implantación en otros países.
El último Plan Estratégico de la UE fija para 2020 el objetivo de desarrollar una "Tuneladora Universal".

La configuración de la cabeza incrementará su versatilidad actual adaptándose a las necesidades que planteen los proyectos en relación con la forma y el tamaño de la sección de excavación necesaria.

La sección circular seguirá siendo la más utilizada, no solo para túneles hidráulicos, ferroviarios y de metro, sino también para túneles de grandes dimensiones, superiores a 15m de diámetro (escudo de presión de tierra de D=15,20m, túneles de la M-30 en Madrid).

Las tuneladoras de cabezas múltiples en disposición horizontal o vertical, desarrolladas en Japón en los últimos años, se están actualmente utilizando en la excavación de estaciones y otros proyectos especiales, en los que la disposición de las cabezas se adapta a la forma de excavación deseada, incluyendo las secciones rectangulares.

Es previsible que esta tecnología japonesa perfeccionada, en un futuro próximo, se utilice también en proyectos similares en otros países.

El gran impulso innovador que experimentará la maquinaria de excavación de rocas y suelos, y en particular las tuneladoras, se realizará como consecuencia de la aplicación en su construcción de la Mecatrónica y de la Nanotecnología,

Figura nº 17: Combinación de tuneladoras para la construcción de estaciones
presumiblemente, bien entrado el presente siglo.(La Mecatrónica 2010?y la Nanotecnología 2025?)

La Mecatrónica, que se inició en Japón en 1980, producirá productos y máquinas cada vez más "listas".

Los componentes mecatrónicos de las máquinas tendrán, como una parte integral de estos, un software específico.

Estos componentes permitirán una mejor utilización de la energía y de los recursos disponibles en las máquinas, un manejo más fácil y una mayor versatilidad de estas.

Estos componentes tendrán la capacidad de aprender, de autoadaptación y autocalibración. El software específico de cada componente integrará procesos lógicos de decisión ante incertidumbres como: el neuronal, el modelo de la "lógica difusa" (fuzzy logic) y sus variantes, que permitirá desarrollar robots más evolucionados que los actuales.

La Nanotecnología revolucionará el futuro en multitud de campos desde el industrial al alimentario.

En relación con su aplicación a la construcción de máquinas, permitirá la fabricación de productos y compuestos diseñados con propiedades de acuerdo a unas especificaciones determinadas. Serán productos más baratos y más fáciles de fabricar y de manejar. **La Nanotecnología hará posible la fabricación de máquinas con un menor peso y coste y más eficientes, más rápidas, más fiables y seguras con un menor consumo energético y con un grado de automatismo y robotización muy superiores a los actuales.**

La durabilidad de estas máquinas será también mayor y, por tanto, los costes de mantenimiento serán menores.

Estos avances tecnológicos permitirán, en un futuro no muy lejano y dentro de este siglo, que, la construcción en general y las obras subterráneas en particular sean más seguras y con un menor coste.
3.2.4 Revestimientos

Los revestimientos en los túneles y en las obras subterráneas desempeñan una función crucial en su estabilidad durante la construcción y en su seguridad durante el período de su vida útil. La primera función que cumplen es la de asegurar la estabilidad en los momentos iniciales de la excavación y que puede llegar a ser crítica en determinadas circunstancias con suelos blandos o rocas blandas con importantes recubrimientos. La práctica habitual es instalar un refuerzo o sostenimiento inicial y posteriormente colocar un revestimiento definitivo. El refuerzo o sostenimiento inicial se compone de elementos como el hormigón proyectado, bulones, cerchas y mallazo metálico generalmente.

Para mantener estable el frente del túnel excavado en rocas blandas inestables, es necesario colocar, en el menor tiempo posible, un sostenimiento adecuado lo más próximo al frente que sea posible. El desarrollo de nuevos métodos más eficientes de colocación de estos sostenimientos así como la aplicación de nuevos materiales para el sostenimiento serán objetivos preferentes para los próximos años.

El desarrollo de la robótica permitirá colocar con mayor rapidez y eficacia el sostenimiento en el frente. Precursores de este tipo de máquinas son los robots gunitadores actuales. Los hormigones proyectados experimentarán importantes modificaciones en su composición y en sus propiedades de modo que podrán fabricarse con las características de colocación, resistencia y durabilidad adecuadas a las características del terreno que tiene que reforzar.

El uso de diferentes fibras de acero, y carbono, así como la utilización de polímeros permitirá conseguir las características: de resistencia a compresión, flexotránsito y tenacidad necesarias. El hormigón proyectado viene utilizándose tradicionalmente como un revestimiento provisional (sostenimiento), ya que sus características de menor densidad, menor resistencia y mayor permeabilidad que los hormigones colocados con encofrado no aconsejan, en la mayoría de los casos, su utilización como revestimiento definitivo.

Sin embargo, en un próximo futuro el hormigón proyectado se utilizará habitualmente como un material adecuado para formar parte y para ser utilizado como revestimiento definitivo. El proyecto Europeo BRITE-EURAM, en el que participa un grupo de empresas de Alemania, Austria e Italia, ha desarrollado un nuevo hormigón proyectado más denso y menos poroso y que consigue
unas resistencias finales a compresión un 50% superiores a las actuales.

El nuevo hormigón proyectado, que ha sido utilizado experimentalmente en los más importantes túneles en construcción en Alemania y Austria, es además más económico y más ecológico que el que se viene utilizando actualmente.

Los aditivos y acelerantes de fraguado que se utilizan habitualmente contaminan el agua subterránea al atravesar los revestimientos de gunita, pueden bloquear los sistemas de drenaje, contaminan el agua y suelo en su circulación por la solera del túnel, y son de naturaleza cáustica y nociva para la salud.

Este nuevo hormigón proyectado no necesita acelerante de fraguado y utiliza un aditivo no alcalino. Este nuevo aditivo retrasa el fraguado unos 3 minutos, los necesarios para proyectar el hormigón e incrementar la adherencia con la roca o suelo, produciendo un endurecimiento muy rápido, objetivos fundamentales para conseguir estabilizar las excavaciones.

El cemento que utiliza no contiene yeso o en ínfimas proporciones, ya que este produce retraso en el fraguado del hormigón convencional, razón por la que necesita un acelerante de fraguado que perjudica a las propiedades finales del hormigón proyectado.

Los sostenimientos tradicionales de hormigón proyectado, cerchas y mallazo metálicos, cederán protagonismo a los nuevos hormigones proyectados con fibras de acero y de carbono, sin cerchas ni mallazo, con un incremento sustancial de la calidad y de la durabilidad del hormigón proyectado.

Este nuevo tipo de sostenimiento permitirá incrementar los ritmos de avance en un 50%.

Otra tendencia que se ensayará en el futuro, será el desarrollo de espumas resistentes de fraguado rápido y muy rápidas y fáciles de colocar como sostenimiento, lo que permitiría la reducción de los tiempos de colocación del sostenimiento y por tanto del ciclo de avance.

En un futuro no muy lejano se desarrollarán y utilizarán también, habitualmente como revestimiento, los hormigones poliméricos más ligeros, resistentes y de mayor durabilidad que los hormigones tradicionales. Estos hormigones conseguirán características resistentes, previamente prefijadas, utilizando resinas y otros polímeros en unión con el cemento Pórtland y distintos tipos de fibras.

El progreso en las cualidades y calidades de los revestimientos definitivos de las obras subterráneas en general y de los túneles en particular, es un objetivo muy importante para los próximos años. El Plan Estratégico de la Unión Europea tiene como objetivo,
para 2010, desarrollar sistemas de revestimientos "inteligentes"
capaces de adaptarse a las acciones ejercidas por las rocas y suelos
por ellas soportadas, permitiendo la flexibilidad suficiente para
absorber el rango de deformaciones previsto junto con una
resistencia adecuada.
Es además, objetivo en los años venideros, mejorar sustancialmente
la calidad integral de los revestimientos definitivos de las obras
subterráneas, confiriéndoles unas características más resistentes
tanto estructuralmente como de resistencia al fuego y al ataque
físico-químico por el agua subterránea de infiltración y por la
atmósfera agresiva de los túneles en servicio.

Las superficies de los revestimientos deberán presentar un mejor
acabado, con superficies más lisas de colores claros e impermeables
que permitan, además de una menor absorción lumínica, una fácil
limpieza de estas.
El desarrollo de nuevos materiales compuestos, de los hormigones
polímeros con utilización de fibras y aditivos, de la mecatrónica y
de la nanotecnología, permitirá conseguir, en los años venideros,
importantes progresos en los objetivos marcados, que tendrán una
importante incidencia en la seguridad, en la calidad y en la
economía de la construcción subterránea futura.

3.2.5 Excavación con Perforación y Voladura

El método de excavación con perforación y voladura se viene
utilizando desde hace más de 350 años y es, y seguirá siendo, el más
utilizado en la excavación de rocas duras y abrasivas.
Las tendencias en la evolución futura de esta técnica constructiva pasa por:

• Conseguir explosivos de manipulación más segura.

• Una mejor utilización de la energía del explosivo mediante un mejor acoplamiento de las características de la roca y del explosivo, que evite el deterioro perjudicial del macizo rocoso y produzca una fragmentación adecuada.

• Reducir los costes de fabricación de los detonadores electrónicos.

• Perfeccionar el diseño y la ejecución de voladuras perimetrales que protejan la roca circundante de las vibraciones producidas por las voladuras.

• Perfeccionar los modelos de predicción de las vibraciones y de los posibles daños al sostenimiento, al revestimiento, a los edificios etc.

• Reducir los tiempos de carga de los explosivos desarrollando explosivos en forma de emulsiones bombeables.

• Mejorar el rendimiento y el control de la perforación, así como optimizar las prestaciones de las bocas y útiles de perforación.

Figura nº 19: Mejora en capacidad y rendimiento de los equipos de perforación

3.2.6 Otros Métodos de Excavación

El impulso innovador debe experimentar nuevos métodos de fragmentar la roca que resulten seguros y económicamente rentables.
En la búsqueda de mayores rendimientos de la excavación en roca que los que se obtienen por los procedimientos habituales de utilización de energía mecánica y energía por reacción química explosiva, se continuará experimentando con técnicas de fragmentación del macizo rocoso como:

- Energía hidráulica, cañón de agua (Rusia tiene desarrollado un cañón de agua; está en fase experimental).
- Utilización de ultrasonidos.
- Utilización de la tecnología del rayo láser de materia.
- Este láser emitirá un haz constante de ondas de materia, mil veces más pequeño que un rayo de luz.
- Energía térmica; chorro de llama combinado con partículas abrasivas.
- Utilización del Rayo de electrones.
- Técnicas de ablandamiento previo de la roca con productos químicos.

La Unión Europea ha fijado para 2020, en el Plan Estratégico, el desarrollo de alguna tecnología nueva para la fragmentación de macizos rocosos (tecnología láser).

3.2.7 Otros objetivos de importancia en la Innovación Tecnológica aplicada a la construcción subterránea.

Además de los objetivos de innovación que ya se han señalado, otras actividades importantes relacionadas con la construcción subterránea estarán en un proceso de perfeccionamiento continuado durante los años venideros y contribuirán muy positivamente al control, la seguridad y los costes de construcción y explotación.

Algunas de estas actividades son:

1. Desarrollo, perfeccionamiento e implantación de técnicas de visualización del terreno por delante del frente de excavación.

Como complemento al importante desarrollo e implantación que tendrán, en los próximos años, las nuevas técnicas de campo, que permitirán un conocimiento muy completo de los terrenos en los que se ubiquen las obras subterráneas durante la etapa de proyecto, se desarrollarán otras técnicas complementarias principalmente
geofísicas que se aplicaran en la fase de construcción y que permitirán "visualizar" el terreno por delante del frente. El objetivo que se pretende es evitar situaciones imprevistas de riesgo tan perjudiciales a la seguridad y al correcto desarrollo de las obras, como consecuencia de la aparición sorpresiva de fallas, presencia de agua, gas, cambios litológicos bruscos, obstáculos, etc. Estas técnicas de aviso temprano de "ver por delante del frente" permitirán compensar la pérdida del contacto visual con el terreno, que conlleva la utilización de tuneladoras y obtener mayores niveles de control del sistema de excavación y del terreno circundante.

El Plan Estratégico de la Unión Europea fija como objetivo para 2020 un conocimiento completo de las condiciones geológicas.

En proyectos importantes y complejos, la aplicación de la tecnología del microtunel permitirá realizar perforaciones largas de pequeño diámetro (1m) paralelas a los túneles principales que, además de sondear y drenar el terreno como sondeo piloto, permitiría, en fase de construcción, utilizar técnicas geofísicas como la detección con geroradar colocando antenas receptoras o emisoras a lo largo del sondeo piloto.

2. Posicionamientos de precisión por satélite (GPS)

La implantación de sistemas de control remoto de máquinas que realicen las actividades de construcción subterránea, llevará asociada la implantación de sistemas de posicionamiento de precisión utilizando varias señales por satélite (GPS) de las máquinas tuneladoras, rozadoras, excavadoras, etc.

3. Control de las actividades subterráneas

El control eficaz de todas actividades subterráneas, exigirá, en los próximos años, el desarrollo de sensores robustos y económicos colocados en las máquinas y en los puntos sensibles del proceso y de los sistemas de comunicación que reduzcan la necesidad de que el trabajador tenga que estar en los distintos puntos en los que se realiza el trabajo, permitiendo además una mejor identificación y localización de posibles fallos o averías en el proceso constructivo.

4. Extracción de escombros

La extracción de los escombros producidos durante la excavación, es una de las actividades más importantes del ciclo de avance y la reducción de los tiempos necesarios para realizar esta actividad es
también un objetivo de la innovación en la construcción de obras subterráneas. Actualmente es de uso creciente la utilización de cintas transportadoras de alta velocidad en túneles de una determinada longitud, y a través de galerías inclinadas o pozos. Cuando la excavación se realiza con perforación y voladura se instala dentro del túnel una unidad de machaqueo que produzca los tamaños adecuados para el transporte con cinta.

Figura n° 20: Sistema de extracción por cintas transportadoras

Otros métodos de transporte de escombros se desarrollarán en los próximos años, como el transporte neumático en cápsulas (pneumatic capsule pipeline, PCP) usado con éxito en Japón en el túnel ferroviario de Akima (8km).

Figura n° 21: Desescombrado por vía neumática. (A) Cápsula circular. (B) Cápsula rectangular

Un sistema de transporte vertical ascendente que transporte cápsulas desde el túnel hasta la calle, se está estudiando para un túnel profundo en la ciudad de New York. Este sistema no solo incrementa la seguridad, si no que también reduce la contaminación
atmosférica generada por el uso de camiones y el coste del túnel en medio urbano.

Otra técnica disponible es el transporte por tubería (tube transport system) que, previsiblemente adquirirá una mayor implantación de uso.

En este sistema el transporte se realiza a través de tuberías de acero de diámetro variable, mediante cápsulas provistas de ruedas que circulan por dentro del tubo, propulsadas por una corriente de aire a una velocidad de unos 12m/s. Cada cápsula puede transportar hasta 3Tm de escombros; este sistema es capaz de conseguir rendimientos de unos 900m³/día de escombros transportados.

Este método de transporte de escombros es idóneo para utilizar en túneles largos (> 8Km) en grandes ciudades ya que reduce la contaminación, los ruidos, los accidentes y su coste es la mitad del que resultaría utilizando camiones en medio urbano.

3.2.8 Instrumentación

La Instrumentación geotécnica y estructural de la obra subterránea experimentará un desarrollo importante con el uso de microsensores inalámbricos de bajo coste que permitirá la creación de estructuras y obras "inteligentes" que supervisen su propias prestaciones y la evolución de su deterioro a lo largo del tiempo y que, mediante programas específicos, permita también diseñar y gestionar su mantenimiento.

![Diagrama de instrumentación y auscultación](image)
4. CONCLUSIONES

En el presente siglo XXI, se acometerá en el mundo la construcción de importantes proyectos de ingeniería que permitirán mejorar las conexiones terrestres, por ferrocarril y carretera, entre Países, Continentes e incluso entre Hemisferios.

Gran parte de estos proyectos exigirán la construcción de largos túneles a través de importantes accidentes geográficos, Estrechos y grandes cadenas montañosas.

Proyectos como el Enlace Fijo España-Marruecos con la construcción del túnel ferroviario de unos 39 Km, 28 Km de los cuales discurren bajo el Estrecho de Gibraltar, suponen un gran reto tecnológico, no solo en su construcción sino también en su explotación, para mantener los niveles de seguridad necesarios.

Estos retos tecnológicos que se plantean, serán superados por un gran esfuerzo de innovación tecnológica, que se producirá en el siglo XXI, lo que se está dando en llamar la tercera Revolución Industrial, de la mano de las tecnologías emergentes como: la Tecnología de los nuevos materiales compuestos, la Mecatrónica y la Nanotecnología, cuyos primeros frutos aparecerán en la presente década, con un desarrollo considerable hacia el final del primer cuarto de siglo (2025).
5. AGRADECIMIENTOS

Agradecimiento, por la ayuda prestada en la redacción y preparación del presente trabajo, a los técnicos y personal de Geoconsult: Luis Gil, Paco Megía, José González del Tánago, Manuel Arlandi, Fernando Gómez, Luis de la Peña, Alberto Mozas, Ramón Páramo, J.A. Rivadeneira, Francisco Cornejo, Luis Carlos Toledo, Gema Gálvez y Mónica Hortelano.
6. BIBLIOGRAFÍA

1. K Construction 2010 future trends and issues; P.Simmonds, J.Clark.CIRIA.

5. A report to the National Science Foundation; Rock Engineering Issues in Underground Urban Infrastructure Construction Workshop on research Needs; Ch. Dowding, P.Smeallie; ARMA Junio 2001.

8. Unbounding the future: the Nanotechnology Revolution; Voidspace.org.uk/science.

10. Sub-urban Reneval; Thanks to new tunneling technologies, real estate trends are down; F. Hapgood.

11. Trans-European Transport net work.TEN-T priority projects; European Commision.